Home     Definition    History    Examples    Medicine    Agriculture    Industrial    Environmental     Regulation     Learning        

History of biotechnology

 

Although not normally what first comes to mind, many forms of human-derived agriculture clearly fit the broad definition of "'utilizing a biotechnological system to make products". Indeed, the cultivation of plants may be viewed as the earliest biotechnological enterprise.

These processes also were included in early fermentation of beer. These processes were introduced in early Mesopotamia, Egypt, China and India, and still use the same basic biological methods. In brewing, malted grains (containing enzymes) convert starch from grains into sugar and then adding specific yeasts to produce beer. In this process, carbohydrates in the grains broke down into alcohols, such as ethanol. Later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. Fermentation was also used in this time period to produce leavened bread. Although the process of fermentation was not fully understood until Louis Pasteur's work in 1857, it is still the first use of biotechnology to convert a food source into another form.

For thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. In selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. For example, this technique was used with corn to produce the largest and sweetest crops.

Biotechnology has also led to the development of antibiotics. In 1928, Alexander Fleming discovered the mold Penicillium. His work led to the purification of the antibiotic compound formed by the mold by Howard Florey, Ernst Boris Chain and Norman Heatley Ė to form what we today know as penicillin. In 1940, penicillin became available for medicinal use to treat bacterial infections in humans.

The MOSFET (metal-oxide-semiconductor field-effect transistor) was invented by Mohamed M. Atalla and Dawon Kahng in 1959. Two years later, Leland C. Clark and Champ Lyons invented the first biosensor in 1962. Biosensor MOSFETs were later developed, and they have since been widely used to measure physical, chemical, biological and environmental parameters. The first BioFET was the ion-sensitive field-effect transistor (ISFET), invented by Piet Bergveld in 1970. It is a special type of MOSFET, where the metal gate is replaced by an ion-sensitive membrane, electrolyte solution and reference electrode. The ISFET is widely used in biomedical applications, such as the detection of DNA hybridization, biomarker detection from blood, antibody detection, glucose measurement, pH sensing, and genetic technology.

A factor influencing the biotechnology sector's success is improved intellectual property rights legislationóand enforcementóworldwide, as well as strengthened demand for medical and pharmaceutical products to cope with an ageing, and ailing, U.S. population.

Rising demand for biofuels is expected to be good news for the biotechnology sector, with the Department of Energy estimating ethanol usage could reduce U.S. petroleum-derived fuel consumption by up to 30% by 2030. The biotechnology sector has allowed the U.S. farming industry to rapidly increase its supply of corn and soybeansīthe main inputs into biofuelsīby developing genetically modified seeds that resist pests and drought. By increasing farm productivity, biotechnology boosts biofuel production.